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The motion of a self-exciting gyrostat is Investigated in the special case where the force 

moment of the housing acts along one of the axes of inertia of the gyrostat while the 
projection of the gyrostatic moment (the moment of the relative momentum of the inter- 

nal flywheels) on this axis is equal to zero. The parameters of the problem are the force 
moment and the moments of momenta of the flywheels, which are all assumed to be 

constant. The dependence of the hodograph of the angular velocity vector of the gyro- 

stat on these parameters is investigated; the domains of parameter values corresponding 
to various types of motion are determined. 

Grammel fl. 21 investigated a similar problem for a solid without internal rotations. 

The present study constitutes an extension of this familiar case. 

1. The inftlrl relrtionr. The motion of a gyrostat with a constant gyrostatic 
moment h under the action of an external moment m is described by the following sys- 
tern of equations : 

Alo + (A, - A,)o,o, + wzh3 - ash, = m, 
A2w2* - (A3 - A,)o,o, + oshl - alhs = m2 (1.1) 
A 3m3’ + (A, - 4) ~1~2 + wlh2 - m2hl = m3 

Here A,, As, As are the moments of inertia of the gyrostat with respect to its prin 
cipal central axes x1, z2, x3. For definiteness we assume that A, < A, < A,;, ai, 
02, 0s are the projections of the angular velocity vector of the gyrostat on the axes zr, 
22, ~3; hr, h2, hs are the projections of the gyrostatic moment, and ml, m,, m, are 
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the projections of the external moment on the same axes. 
The system of equations of gyrostat motion can be reduced to the form (1.1) when the 

absolute rather than the relative velocities of the flywheels are constant, i. e. when the 

flywheel shaft is not acted on by any moments [3]. 

Equations (1.1) are essentially nonlinear. Their exact solution for an arbitrary m can- 

not be constructed. However, a solution can be constructed if the vector m is directed 

along one of the principal axes of the gyrostat and if the projection of h on this axis is 

equal to zero. It is necessary to establish whether the moment macts along the axis of 

the maximum (minimum) moment of inertia or along the axis of the intermediate mo- 

ment of inertia. In the first two cases the equations of gyrostat motion are reducible to 
an identical form; in the latter case their form turns out to be somewhat different. 

2. Action of the moment along the axi of maximum moment 
of inertir. Let the axis of action of the external moment m be X~ (the axis of maxi- 

mum moment of inertia of the housing), so that ha = 0, m, = m2 = 0. 
Now, introducing the variable 

(A3--1)(A3--2) 

AlA2 (2-l) 

we can write Eqs. (1.1) as 

2 + [ ;: I$r :!)]“’ aa = hz [ A1 (A3 - /L$A!A~ - A.)1”1,,, 
dti AI&---1) -- 
du A2 (As - ‘42) 1 %o 

’ 

= _-h 
1 

Az(As--h)(As-- A2) I 
(2.2) 

A2 C AlA 

(As - Aa)(As - Al) 1 “$ + (A, - A,) C.O~CO~ + wlh2 - O& = m3 

The solution of the first two equations can be written as (2.3) 
h I 

A3 - Al ’ 

‘/I 
cos u + --&$- 

2 

Here Q is the integration constant (the second integration constant is contained qddi- 

tively in u) ; we set Q > 0. 
Let us introduce the dimensionless time t by way of the relation 

dz = Q 
c 

(AZ - -41) (As - AI) (A3 - A2) 

.41AzAs I 

‘Q 

The last equation of system (2.2) can be written as 

d2U 
-- 
dr2 

sinucosufccsinu+~cosu=~ 

h2 VA2 (As - ‘41) 

a = - r (A2 - AI)(As - A2) ’ 

x = - ~2 (A;: AI) c 

AlA 1 I/¶ 
(A3 - AI) (As - ‘42) 

(2.4) 

(2.5) 

(2.6) 

We have thus reduced the problem to the investigation of nonlinear equation (‘2.5) 
which depends on the three parameters a, fi and x. 

Characterizing the motion of the gyrostat by the motion of the phase point in the 

space wr w2 w3, we see that the phase trajectories lie on the elliptic cylinder 
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[01- hl/ (‘-la - &I2 
51% (As - Az)IA 

+ [Uz-h2/Us-- *Ws= 1 
SP (As - Al) / -4% (2.7) 

so that the components aland osremain bounded. Let us consider the behavior of the 

component 

(2.8) 
Constructing the integral of Eq. (2.5), 

1 olua -- 
t ) 2 dz 

-_tcos2u+acosu- psinu=xu+T (2.9) 

(where y is the integration constant), we obtain the following expression for 0s: 

0s = Q f2 (7 + xu + l/4 cos 2u - a cos u + p sin u) (A, - A,) /A3 (2.10) 

Expression (2.10) together with (2.3) gives us a parametric relation for the phase 
trajectory in the space w,oso,.The dependence of u on r is defined by the quadrature 

s du 

I/r + xu + l/4 cos 224 - a cos u + p sin u 
ZJfZ = (2.11) 

which cannot be expressed in terms of known functions for x #= 0 . 
To determine the character of the phase trajectory in the axes otosws we need 

merely investigate the behavior of the phase curves described by Eq. (2.9) in the plane 

uu’ (u’ = du / dz) which is the development of elliptic cylinder (2.7). The structure 
of the phase picture on this plane clearly depends on the potential function in the inte- 

gral of (2.9). U tu) = -I/ 4 cos 2u + a cos u - /3 sin u - xu (2.12) 

Depending on the values of the parameters a, p and x , the function u (U) can have 

four, two, or zero extrema in the interval 2n. Their positions are given by the equation 
dU / du = 0 ; the positions of the points of merging of two extrema into an inflection 

point are given by the equation dsU (u) / dus = 0. The set of equations 

sin u cos u - a sin u - /3 cos u = x (2.13) 

cos 2u - a cos u + p sin u = 0 

therefore defines a surface in the parameter space a, p, x which divides the latter 

into domains with differing numbers of extrema of the potential function U (u). 
Finding a and /3 from (2.13), we readily obtain the equation of this surface in para- 

metric form, 
a = cos3 u - x sin u, #J = sin3 u - x cos u (2.14) 

Expressing the cross sections of this surface with the planes x = oonst as the equa- 
tions of a family of curves on the plane afi, we see that for x = 0 the separation curve 
is an astroid, a% + p” = 1 (2.15) 

The values of a and fl lying inside this astroid correspond to four real roots of the 
equation dU ! du = 0 ; the values lying outside the astroid correspond to two roots. 

For X # 0 .curve (2.14) clearly constitutes an equidistant of the astroid, i.e. a curve 
“parallel” to astroid (2.15); the quantity 1 x 1 is numerically equal to the “distance” 
between the corresponding points of the astroid and the equidistant. 

Figure 1 shows several curves defined by Eq. (2.14) for several values of x < 9. It is 
clear that as 1 XI increases the vertices of the equidistant shift symmetrically with 
respect to the hisectrix of the first and third quadrants. These vertices, whose positions 
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are given by the relations 

da / du = db / du = 0, sin u cos u = - r/s x (2.16) 

likewise move along the astroid 

[a - fJ = (1 + a/sx)“1, a + fl = (1 - 2/sxyi’ (2.17) 

as x varies. 

'l'he existence of the vertices, i. e. of the singular points defined by (2.16). is possible 
only for 1x1 < */2. For larger 1x1 the equidistant of the astroid becomes a smooth closed 
curve which tends to a circle with the radius 1x1 as 1 x 1 + 03. From Fig. 1 we see that 
as 1x1 increases from 0 to I/% the two opposite sides of the equidistant draw closer, 
making contact when 1x1 = r/Z. Further increases in 1x1 result in the appearance of a 

Fig. 1 

new domain lying between the mutually intersecting aides of the equidistant, where (as 

we can show) the function U (u) has no extrema whatever. The domain of four extrema 
then breaks down into two isolated 

subdomains whose extent dimini- 
shes with increasing 1x1 and vani- 

shes completely for 1x1 = 8/, In 
Fig. 1 the domain of four extrema 
is cross-hatched ; the domain of 

two extrema is blank; the domain 

of absence of extrema is shaded. 
In the case x > 0 the “longitud- 
inal” axis of the equidistant is the 
bisectrix of the second and fourth 
quadrants of the plane afl. 

Using the decomposition of the 

parameter space shown in Fig. 1. 
we can readily construct the phase 

a-0 p=vq x=-07 trajectory picture in the plane uu’ 
for any combination of values of 
the parameters a, fi, x. Figure 2 
shows sample phase portraits for 

two sets of parameter values ; these portraits illustrate the existence of both closed and 
open phase trajectories as InI increases without limit. 

In analyzing the motion of a gyrostat under the action of a restricted moment it is 
sometimes necessary to determine the character of variation of its sum kinetic moment 
L. Making use of (2.3) and (2. lo), we readily obtain the following expression for this 
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L2 = (Alal + h,)2 + (A#2 + h2)2 + A2e2 = 2mal 
[ 

(‘& _ A:‘,$ _ a,J” + 

+ ~2 [ADA, - A8(A2z- A1) - 2~442 (A2 - AI)] + As2 [ tA3 “‘,,)i + t/,8 !fAp)$l 

(2.181 
We see that the ‘square of the absolute value of the kinetic moment is a linear function 

of u(for ma # 0) , and therefore attains its extrema together with U. The phase plane 

uu’ thus enables us to establish the character of variation of the kinetic moment. Spe- 
cifically, this plane enables us to determine when the kinetic moment L can have a 
secular component and when such a component does not exist. 

8. Action of the moment along the axia of the lntermedlate 
moment of inertia. If we impose the conditions h, = 0, ml =m3 = 0 and 
introduce the variable 

lJ= 
r (Az- Al)(A3-‘42) 'I* 

1 ‘41‘43 1 s o & 

2 (3.1) 

then the first and third equations of system (1.1) become 

In contrast to the preceding case the solution of this system can assume different forms 
for different initial conditions, namely (3.3) 

where either both upper or both lower particular solutions must be taken. Here 51 is an 

integration constant (Q 2 0) ; the second integration constant is contained in u. In 

addition to general solutions (3.3). system (3.2) has two particular solutions not con- 

tained in (3.3). (3.4) 
“I_ Q (*)l”,f.+ A21t_1A1 ) OS= - 52 (y) ‘%~- A 

In the plane mlaQ solutions (3.3) describe two families of hyperbolas with mutually 

perpendicular axes whose common asymptotes are given by particular solutions (3.4). 
The sign of the constant P defines motion along a branch of the corresponding hyperbola 
or asymptote. In contrast the preceding case, unbounded variation of v can be accom- 
panied by unbounded variation of the components o1 and o,.To find the range of variation 
of v we transform the second equation of system (1.1) into 

(3.5) 
by converting to the dimensionless time ‘t in accordance with (2.4). 

Here the upper functions correspond to the upper functions of solution (3.3) ; the lower* 
functions correspond to the lower functions of the latter. The parameters a, p, x are 
given by the formulas 

ha vds(A2- A) 

cc = Q(As- A)(A3 - AZ)' 
P= 

hl ~‘41(As- -42) 

Q(.b-A1)(A2- AI) 
(3.6) 
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x = S-2” (~43~: AI) 1 

AlAs 1 % (cont. ) 
(A3 - A1)(A3 - ~13) J 

Particular solutions (3.4) are associated with the following form of the equation for u : 

dQ/da2*e’2” +(a*S)eko=x (3.7) 

The signs in this equation must be chosen in accordance with the form of particular 
solution (3.4). 

We shall consider only the case where the upper expressions are used in Eq. (3.5) ; 
the second case follows by formal transposition of the parameters a and p. 

Writing out the first integral of Eqs. (3.5) and (3.7) and making use of (3.1). we obtain 

w.3 = !G? I/2 (r i- xv - ‘la ch 27/v- r~ ch u - p sh v)(& - A,) / A, (3.8) 

o,=Q I/2[r+-xu-‘/,e+2~t(~(_i_)el~](AB-A1)/AZ (3.9) 

respectively. 

Making use of these expressions, we can readily show that the square of the absolute 

value of the gyrostat moment L is a linear function of v as in the preceding case. 

The behavior of the phase trajectories in the axes UD’ is determined by the structure 
of the potential function U (a)(contained in the radicands of (3.8) and (3.9)). In con- 

trast to the preceding case, there can be either one or three extrema of the potential func- 

tion in the interval - 00 < v < 00. The boundary curve on the parameter plane ap 

can be determined from the conditions dU / & = 0, @l_J / dvs = 0, which gives us 

for Eq. (3.5). 

a = -chsv - x sh v, p = sh3 v + x ch v (3.10) 

The general shape of this curve for several values 
of x is shown in Fig. 3. For x = 0 we have an expli- 

cit expression for the boundary curve, 
a= $ - $1” z i (3.11) 

which can be called a “hyperbolic astroid”. The 

latter has two isolated branches (as does an ordinary 

hyperbola) ; only one of its branches (the left-hand 
branch) satisfies Eqs. (3.10). As we see from the 
figure, this curve has a cusp at its vertex. For x # 0 
the vertex, whose coordinates are easy to determine 

from the conditions similar to (2.17). 

sh2v = - 2/sx (3.12) 

begins to move along the curve 

3 (a” + b2)z!” = 4 + fi” - aa (3.13) 

(the broken curve in Fig. 3). The domain of para- 
meters lying inside the branch of the hyperbolic 

Fig. 3 

astroid is associated with three extrema of the potential function ; the domain outside 

this branch is associated with one extremum. 
The potential function for particular solutions (3.4) is of the form 

U (v) = l/,efzo 2 (a f fi)ef” + xv (3.14) 
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and its extrema are defined by the relation 

(3.15) 

where the double sign in front of the radical sign has the usual meaning, and where the 
remaining double signs refer to one or the other particular solution (3.3). The values of 

the parameters a, fl , x for which function (3.15) has two, one, or zero extrema can be 

readily determined from (3.15). 

Comparison of the two above cases of gyrostat motion indicates that when the moment 

m.acts along the axis of the maximum or minimum moment of inertia of the gyrostat, 
u (and therefore L) can increase without limit. On the other hand, when the moment 
acts along the axis of the intermediate moment of inertia L cannot, as a rule, increase 

without limit. Physically, this has to do with the fact that the rotation of a nonsymmetric 

solid about the axis of the intermediate moment of inertia is not stable. This makes the 
accumulation of kinetic energy along one of the axes (the axis ~a) impossible, and this 
energy is exchanged among the motions along all three axes. 

4. The ca8a of axial dynamic symmetry of A gyrostat. If the gyro- 
stat housing has axial dynamic symmetry, then the above relations do not hold and the 

problem must be investigated separately. Two cases are possible, namely: 
a) the moment m acts along the axis of dynamic symmetry ; 
b) the moment m acts perpendicularly to this axis. 

In the first of these cases we set ha = 0, m, = m2 = 0, A, = A, in Eqs. (1.1) 
(the axis of symmetry is a+) and introduce the notation 

U=& osdt, 
\ 

e=(&---r)IAl (4.1) 

to obtain 
c 

0 ~=$-2c0su+h,/(A,--A,), to2 = Q sin u + h, / (As - A,) (4.2) 

(As I E)@U / dt2 - Qh, sin u - Qh2 cos u = m3 (4.3) 

We infer from this that the phase point in the space w1020s moves along the side 
surface of a circular cylinder parallel to the axis 0 a; the character of the motion of the 

point along this surface is defined by the familiar equation of a mathematical pendulum 
with a constant moment at the axis (Eq. (4.3)). Equilibrium positions in this case are 
possible only for 

(4.4) 
Other relations result in the second case, i.e. when we set h, = 0, m2 = m, = 0, 

A, = Aa in equations of motion (1.1). 
Introducing the notation 

e o,dt = v + D 
s (4.5) 

where D is some still arbitrary constant, we can write the expressions for os and osin the 
form 0 a = --A, (1: + D) / ITA, + lcf (4.6) 

0) 1----h,(v+D)“/2~.~,+(z,+D)(M+h,/~A1)f~li 

Here M and x are integration constants. The first equation of (1.1) yields the follow- 
ing equation for 2~: 
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CPV 

zF+ 

Converting to dimensionless time, 

dz = h,/A, 1/,&t (44 
and choosing the constant Din such a way that the coefficient of v2 in the cubic polyno- 

mial in Eq. (4.7) vanishes, i. e. setting 

we obtain 
D = --A,(M +h,leA,)l h, 

d2v I dr2 f vs - 3hv = 26 (4.9) 
Here 

We see that the parameter 6 does not depend on the initial conditions; the parameter 
is determined by the initial values of ~,and 0s. Equation (4.9) has the integral 

% (dv / dT)2 + ljgv4 - "I2 iv2 = 26~ + const (4.11) 

which enables us readily to express o1 (v), and also to investigate the character of the 

phase trajectories on the plane vu’. This plane can be regarded as the development of 
the side surface of the parabolic cylinder defined by expressions (4.6) in the space 

a1 @s 0s. The number of equilibrium points on this plane is either one or three. Pro- 
ceeding as before, we can readily decompose the parameter plane hd into domains with 

one and three equilibrium states. The curve separating these domains is the semicubic 

parabola 6 = (A)% (4.12) 

Qualitatively, this case is close to the case of motion of a nonsymmetrical gyrostat 

analyzed in Sect. 3. 
The solutions constructed above can be used to analyze the process of liquidation of 

the longitudinal component of the angular velocity of a gyrostat with relay switching 

of the sign of the controlling moment r.n in accordance with the sign of this component. 
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